
.
8 8

8 8

8 8

8 U S L / D B M S N A S A / R E C O N 8

8 8

8 8

8 W O R K I N G P A P E R S E R I E S 8

8 8

8 8

8 8

Report Number

DBMS.NASA/RECON-ll

8 8 L C L n V I
M I r r U A
l u & b c) r c , 8 8

. *cCna-
cdn c w
* + m e
~ < r n r n r *
ecbcc a
4 r n M P

tn m o
w e e d

6- o m m
b n W g C
(+e McSM T h e USL/DBU2S NASA/REmN Wo r k i n g Paper Series contains a

h $ E s collection of reports representing results of activities being
'nC,M conducted by the Computer Science Department of the University of m o a40

0 m w * Southwestern Louisiana pursuant to the specifications of National
~ l c * ~n Aeronautics and Space Administration Contract N u m b e r N A W - 3 8 4 6 .

I r , c p ' w w T h e w o r k on this contract is being performed jointly by the a8 b t n r

near m

n r , F

University of Southwestern Louisiana and S o u t h e r n University.

h
w

N
2

For m o r e information, contact:

W a y n e D. Do m i n i c k

Editor
U S L I D E V E N A S A / R E C O N W o r k i n g P a p e r Series

Computer Science Department
University of Southwestern Louisiana

P. 0. Box 44330
Lafayette, Louisiana 70504

(318) 231-6308

AN OVERVIEW OF SELECTED

INFORPvlATION STORAGE AND RETRIEVAL ISSUES

IN

CUWUTERIZED lXEWENT PROCESSING

Valentine U. Ihebuzor

Computer Science Department,
University of Southwestern Louisiana,

Lafayette, Louisiana.

December 29, 1984

ABSTRACT'

T h e rapid development of computerized information storage and
retrieval techniques has introduced the possibility of extending
the w o r d processing concept to document processing. A m a j o r
advantage of computerized document processing i s the relief of
the tedious task of manual editing and composition usually
encountered by traditional publishers through the imnense speed
and storage capacity of computers. Furthermore, computerized
document processing provides a n author with centralized control
w h i c h is a handicap of the traditional publishing operation. A
survey of some computerized document processing techniques i s
presented w i t h emphasis on related information storage and
retrieval issues. String matching algorithms are considered
central to document information storage and retrieval and are
also discussed.

......................
I DEVE.NASA/RECON-ll I

T h e author w i s h e s to acknowledge the assistance of Dr. W a y n e D.
Do m i n i c k of the University of Southwestern Louisiana f o r making
this w o r k possible, and D r . TimM. Mer r e t t of M c G i 1 1 University
f o r introducing the author to some interesting topics in
computerized text processing.

......................
I DM.NASA/RECON-ll I

...........
I N A S A I

...........
I N A S A I
...........

TABLE OF CONTENTS

Pape

1 . INTRODUCTION 6

2 . FUNCTIONAL AND DESIGN REQU1R"TS 8
3 . DocullENT STORAGE AND RETRIEVAL TECHNIQUES 15

3.1 Document Specification 15
3.1.1 The Markup Language 15

3.2 Document Specification Language 19
3.2.1 Declarations 21

3.2.2 Document Type Definitions 21
3.3 Character Sets and Font Variations 22
3.4 The D a t a b a s e 22

4 . THE SUPPORT ENVIR0"T 24

4.1 Writing Aids 24

4.2 Structure Editing Aids 25
4.2.1 Locators 25

4.2.2 Constructors 26

4.2.3 Mutators 26

4.2.4 Selectors 26

4.3 Document Management Aids 27
4.3.1 Cross Referencing 27
4.3.2 Indexing 27

4.4 Annotation 28

4.5 Partial Outputs 28

......................
I DM.NASA/RECON-ll I - 4 - I DoculllENT PROCESSING I
......................

...........
I N A S A I
...........

...........
I N A S A I
...........

4.6 Document Maintenance 29

5 . DATA STRUCTURES 30

5.1 Strings 30

5.2 Association Lists 31

5.3 Manuscript Files 31

5.4 Fonts 32

5.5 Environments 33

5.6 Text Buffers 34

5.7 Other Support Structures 36
6 . STRING MATCHING ALGOR1 THWS 37

6.1 Scan for First Character 38
6.2 Scan for Lowest Frequency C h a r a c t e r 39
6.3 Knuth-Morris-Pratt 40

6.4 Boyer & Moore 41

6.5 Text Signatures 43

6.6 PATRICIA 43

7 . SZprMARY 44

8 . REFERENCES 45

9 . APPENDIX (Figures & D i a g r a m s) 47

......................
,
I

I DM.NASA/RECON-ll I - 5 - I DOCIMENT PROCESSING I
......................

AN OVERVIEW OF SOME
INFORMATION STORAGE AND RETRIEVAL ISSUES

IN
-UTERIZED DoclMENT PROCESSING

1. INTRODUCTION

W o r d processing applications with the aid o f computers are

almost becoming comnonplace. M o s t applications have however

concentrated on the use of text editors and text formatters to

m a n i p u l a t e text files in order to produce a desired output w h i c h

is formatted according to the needs of the user. T h u s w o r d

processing applications are essentially input/output techniques

w h i c h take advantage of the imnense power, speed and storage

capacity o f computers to relieve the tedious p r o b l e m of manual

editing and composition.

T h e rapid development of information storage and retrieval

techniques has introduced the interesting possibility of

extending the w o r d processing concept to document processing.

Until recently, document processing has entirely been a manual

craft involving specialists like Editors, Proof readers, Graphic

designers, Typographers and other publishing professionals.

Several document preparation systems have recently been developed

f o r use by w r i t e r s o f technical documents and by publishing

houses. A f e w of these have been specialized to address problems

o f a specific kind w h i l e others have been general to provide

answers to a w i d e range of document preparation problems.

H o w e v e r , the goal of complete computerization of all document

preparation problems is s t i l l to be m e t as some of the related

semantic problems are not amenable to computerization.

In this report a discussion of some 1- issues in document

processing will be presented. T h e approach will be to survey some

o f the fairly recent material in the literature with a v i e w to

identify topics that relate to information storage and retrieval.

Specifically. the topics to be discussed include:

* Functional and D e s i g n Requirements o f a

Document Preparation S y s t e m

* Document Specification M e t h o d s

* D a t a Base Characteristics and Content

* Support Environment for a Document

Preparation System,

* D a t a Structures for Record and Storage Management

* Algorithms for String Matching.

I N A S A I

2. FUNCTIONAL AND DESIGN REQUIREMENTS

The main objective of this report i s to present a

description of some functional components of a document delivery

system. T h e focus will be on a system that w o u l d provide

comparable services to those provided by standard publishing

houses. In order to carefully define the functional objectives of

such a system, i t is necessary to start by examining the

functional attributes of a traditional publishing house. Figure

2.1 shows the information f l o w schematic in a traditional

publishing operation. A m a j o r problem of the scheme i s the

removal f r o m the author of control of the various stages in the

production of the finished product. T h e intermediate stages in

the d i a g r a m represent stages in w h i c h the author of the book is

not involved. All the author does is to provide a rough type

w r i t t e n m a n u s c r i p t to a n editor (an expert in document design)

w h o after making some changes submits the manuscript to a

typesetter w h o produces typset galleys f r o m the manuscript.

P r o o f reading of the galleys against the original then follows.

The next stage i s that of pagination w h e r e the galleys are cut

into page sizes and the addition of figures, footnotes as w e l l as

page numbers and perhaps some cross reference material takes

place. Indexing t h e n follows as the material i s then sent to a n

indexer w h o produces a n index f r o m the available material. The

index is the sent for typesetting, and later added at the end of

the book, w h i c h i s then printed [Reid, 8 0 1 .

At each stage of the process, errors, possible enhancements,

observed inconsistencies, cause the material to be recycled. T h e

addition of n e w material (possibly as a result of current

information on the subject m a t t e r) lead to numerous problems and

great expense of changing page layouts, footnotes, cross

references and indexes. Because the author i s not involved in

m o s t of these production stages, there are inherent problems of

misunderstanding and even errors. Sometimes conmunication

problems cause unnecessary delays w h e n the production stations

exist in remote locations or even different states or countries.

T y p i c a l l y , the time lapse between the completion of the author’s

m a n u s c r i p t and the publishing of the finished product is on the

order of m o n t h s or even years and potential inconsistencies may

potentially lead to author frustration; also revision m a y become

a continous necessity since the time lag causes the material to

always n e e d revision as n e w research developments overtake the

current contents of the document during the lengthy production

t ime .
A m a j o r disadvantage of the traditional set up i s the

absence of centralization. By using a computer, the processes

w h i c h w e r e hitherto handled m a n u a l l y c a n be automated and the

m a n a g e m e n t - o f the various components can then be achieved by

m e a n s of a computer. Figure 2.2 illustrates this scheme. This

scheme represents a n improvement over the scheme of Figure 2.1 in

the sense that the entire production process can be managed

centrally and the production time frame can be greatly reduced by

the enormous power and speed of a computer. However the

responsibility for the final appearance of the document is still

removed f r o m the author because of the use of external "expert"

software packages to handle document design, typographic design

and document layout. T h e s e packages are designed externally(

possibly at different places) and applied to the document

sequentially via the computer in a stereotype fashion. Besides

the added speed due to computerization, the scheme has obvious

similarities w i t h the traditional scheme in that once the author

submits the manuscript, he/she has no more control over the

appearance of the finished document. Some of the problems of the

traditional setup will also arise.

I

In order to provide the author with the required level of I

I
control over the final appearance of the document. i t i s

desirable to provide mechanisms w h i c h enable the author to

control the document design process, the typography and the

layout. This m e a n s that the author m u s t be provided with the

tools to control the parameters w h i c h control all the document

d e s i g n processes. T h e schematics of this approach are shown in I

I

Figure 2.3 w h e r e the author i s the source of all design

specifications for the document. M o s t of the initiative i s the

author’s. T h e idea is that a w r i t e r prepares a manuscript that i s

represented in a document preparation language. This manuscript

is processed by the s y s t e m into a finished document. Some

m e a s u r e of competence is required of the author regarding

document preparation as well as the knowledge of the syntax of

the document preparation language. In such a system, desired

features for output control are parameterized and are available

to the author. In some systems, e.g., SCRIBE [Reid, 801, the

information s y s t e m draws on a database of format specifications

that have been produced by a graphic designer to produce a

document that contains the author’s text in the designer’s

format. In other cases, a user m u s t associate explicit structural

description with each document [Walker, 811.

In order to provide m o r e power to the latter system, a

support environment w i t h a n interactive w o r k station is required.

This corresponds to the document editor. According to Janet

W a l k e r [Walker, 811, ideally a document editor manipulates a data

structure that i s a canonical representation of a structured

document. T h e actual representation of the document i s parsed

into the internal f o r m as a n import operation w h e n the document

i s loaded into the document editor. U p o n exit, the editor

unparses the internal f o r m back into the appropriate document

I N A S A I -----------

preparation language. T h e use of these parsing techniques makes

i t possible to design document editors w h i c h maintain the

structure of each language independently of the language in w h i c h

the structure i s represented. S u c h a n editor allows for both

structure editing and text editing operations; the structure

editing operations w o r k not on the textual representation but on

the document structure itself. Adding a n e w document language

consists of w r i t i n g the parser and unparser for that language.

U s e r s can choose to v i e w the text editor either as a text editor

or a structure editor. Text editing colrmands w o r k as if the

internal representation w e r e text and structure editing comnands

operate directly on the internal representation. Conceptually,

the document editor i s a multiprocess executive w h o s e top level

is a text editor. T h e text editor provides the comnand interface

for the rest of the s y s t e m and also edits the text. T h e text

editor integrates a set of document editing tools into a unified

environment and provides the comnand interface and help facility

I

I
for them. Several editors with these capabilities have been ~

designed and implemented. T h e y include EMACS [Stallman, 811,

ETUDE [Good, 811, ED3 [Stromfors, et al., 811 and PEN [Allen, et

al., 811.

Only a f e w systems have been generalized enough to provide

many answers to the problems of computerized document design.

N o t a b l e examples include: TEX [Knuth, 781, SCRIBE [Reid, 801 and

ETUDE [Hanxner, et al., 811. JANUS [Chamberlain, e t al., 811, a

proposed system, is intended to provide support for authors of

complex documents containing mixtures of text, line art and tone

art by providing t h e m w i t h imnediate feedback and direct

electronic control over page layouts, using a special 2-display

workstation. Knuth’s TEX i s designed for the production of

documents containing large amounts of mathematical notation; i t

represents a n expansion over EQN [Kernighan, e t al., 751 w h i c h i s

a s y s t e m f o r typesetting mathematics.

Several editors and formatters have also been developed for

a variety of specific applications. PEN - a hierarchical document

editor, is directed at documents having a significant amount of

mathematical notation; i t i s a n interactive formatter w h i c h

provides a concise notation for specifying objects. ED3 provides

a powerful tool f o r data editing in interactive systems through a

combined ability for handling hierarchical structures and screen

oriented text editing. En44CS a n Extensible, Customizable, Self

Documenting Display editor i s a display editor w h i c h i s

implemented in a n interpretive h i g h level language. T h e main

attribute of EMACS i s i t s h i g h extensibility w h i c h gives users

the ability to add or define n e w editing conmands or to m o d i f y

the existing comnands to suit their editing needs. T h e EMACS

provides a suitable environment f o r document editor design by

taking advantage of i t s extensibility.

Several text formatting systems (p r o g r a m s) which provide word

processing capability have b e e n the di r e c t descendants of RUNOFF.

These include ROFF, ROFF, TROFF, NROFF, and SCRIPT.

3. DOCCMENT STORAGE AND RETRIEVAL TECHNIQUES

3.1 Document Specification

3.1.1 T h e M a r k u p Language

T h e technique for document specification is a scheme for

m a r k i n g (labelling) regions of text and locations in i t . A

document preparation s y s t e m w o u l d have a facility f o r passing

information to the s y s t e m via declarations. In this regard, the

w r i t e r identifies segments of the text in abstract terms and the

s y s t e m will retrieve the concrete details f r o m the system

database. T h i s m e a n s that the designers o f the document

preparation s y s t e m m u s t identify the proper set of abstractions,

n a m e t h e m appropriately and devise a simple syntax that w o u l d

a l l o w these abstractions to be represented in a file of text

characters. Several schemes are available for document markup.

T h e following shows three versions of the s a m e scheme f or this

purpose [Reid, 801:

M a r k u p is f o r m a r k i n g regions of text,

individual letters and w o r d s and also

specific points within the text.

Call T h e Software House 232 6730

and w a t c h Vals Computers do the job.

The above segment can be m a r k e d up w i t h control w o r d s as follows:

M a r k u p i s for marking ITALIC regions END;ITALIC of text,

individual letters and w o r d s and also specific points

w i t h i n the text.

QUOTATION Call ITALIC The Software H o u s e END;ITALIC

232-6730 and w a t c h BOLD Va l s Computers END;BOLD d o the

job END;QUOTATION.

T h e amount of w o r k required to m a r k u p the segment i s reduced

considerably by the use of escape-character notation; e.g.,

M a r k u p i s for m a r k i n g @i[regions] of text, individual

letters and w o r d s and also specific points within the

within the text.

sbegin(Quotation) Call ei[THe Software House] 232 6730

and w a t c h e b < V a l s C o m p u t e r s > d o the job eend(Quotation).

T h e latter example in the above illustration w o u l d appear to be

less cumbersome and easier to manage. T o use the escape-character

type o f notation, the m a r k u p alphabet w o u l d need to have very l o w

probability o f occurrence within the text. Characters such as "e"

and " \ " are suitable candidates for this choice. ~

A manuscript will therefore consist of a m i x t u r e of text and

markup. T h e document preparation system should be able to tell

t h e m apart. In general, this added information called m a r k u p to a

piece o f text designated for processing serves two useful

purposes [Goldfarb, 811:

(i) I t separates the logical elements of the document

(i i) I t specifies the processing functions to be

performed on those elements.

T h r e e distinct steps are required in the document m a r k u p

process:

(a) Analysis of information structure and other

attributes of the document, including the

identification of each meaningful separate

element, paragraph, heading, ordered list,

footnotes o r some other element type.

(b) Determination f r o m m e m o r y o r style book,

the processing instructions("contro1s") that

will produce the desired format for a given

type of element.

(c) T h e insertion o f the chosen controls into the

text.

I N A S A I

T w o classes of m a r k u p techniques have been identified [Goldfarb.

8 0 1 :

(1) Procedural m a r k u p w h i c h consists of instructions

or

control words. Examples of i t s usage c a n be found

in SCRIPT and RUNOFF families of formatting

languages.

(2) Descriptive m a r k u p w h i c h consists of tags w h i c h

describe specific elements and types in the

document.

Procedural m a r k u p has several disadvantages including:

(i) T h e loss of information about some attributes of

the document. For example, if the centering

control i s used in RUNOFF to center both headings

and figure captions, no indication of the

specific attributes of each case i s kept within

the text so that future retrieval programs can

distinguish the headers f r o m the captions.

(i i) A nother disadvantage i s the fact that i t lacks

flexibility because of its procedural approach.

A user w h o decides to change the style of a

document (perhaps because of the use of another

output device) will need m a j o r revisions of

m a j o r elements of the document to reflect

the change.

(i i i) M a r k u p with control w o r d s c a n be time consuming,

error-prone, and will require a h i g h degree of

operator training particularly w h e n complex

typographic results are required.

T h e disadvantages of procedural m a r k u p are avoided by a m a r k u p

schema - T h e Generalized M a r k u p Language (-1 due to G o l d f a r b

[Goldfarb, 801.

3.2 T h e Document Specification Language

T h e Document Specification Language provides a n interface

between the w r i t e r and the computer system. T h e language m u s t

therefore be able to provide m o s t of the services provided by

m a j o r publishing houses. Some of the characteristics w h i c h the

specification language m u s t possess to provide such services

include [Chamberlain, et al., 811:

(1) P o w e r to describe such complex objects a s footnotes,

numbered lists, bibliographic m a t e r i a l , tables of

content, tabular and graphic m a t e r i a l s , special

characters, font variations, graphical display,

ligatures and other forms of typeset.

(2) Simplicity and Friendliness, so that w r i t e r s need

o n l y have minimal training in order to use the

sys t em.

(3) Flexibility, so that writers c a n have a w i d e range

o f alternative formats to choose from.

(4) Symbol independence, so that usage o f one symbol at

one point will be independent of its usage at other

points.

(5) Extensibility o f the scope of language operators

so that they c a n accept additional "directions"

f r o m authors during formatting.

In general, three classes of notation are needed in the

document preparation language:

I. R e g i o n labels - a notation for attaching a label

or attribute to indicate the authors intention

regarding a region of text.

11. M a r k e r s - a notation for m a r k i n g specific points

within the text. M a r k e r s m a y include comnands.

1 1 1 . D e c l a r a t i on - a notation f o r passing values to

the s y s t e m to control certain details of its

behaviour.

T h e first two o f these classes a r e included in the text by m e a n s

I N A S A I ----------- I

o f the appropriate m a r k u p language. T h e requirements for

declarations will be the subject of the next f e w sections.

3.2.1 Declarations

Declarations in a document specification language, serve

to control the system by passing to i t various parameters and

values. M o s t declarations are restricted to the begining of the

document manuscript but some are permitted to occur anywhere. In

SCRIBE [Reid, 801, simple declarations include eDevice(name),

w h i c h instructs the SCRIBE compiler to format the document for

the named device; @Make(what) w h i c h instructs the compiler to

produce a document o f a requested type or @Pageheading w h i c h

tells the compiler w h a t text to put in the running page heads.

C e r t a i n declarations, such as @Define and @Form are intended

primarily f o r use in document format definition [Reid, 801.

3.2.2 Document T y p e Definitions

W h e n e v e r a s y s t e m produces a document f r o m a manuscript,

i t d o e s so under the control o f the format w h i c h is specified in

the document editor database. F o r example, the business letter

document type w o u l d provide the usual f o r m letter environment

w h i c h provides environment f o r return address, letter headings,

greeting a n d a signature. T h e T h e s i s (Dissertation) document type

w o u l d provide environments for chapter headings, footnotes, title

pages, bibliography, etc. T h e document type definition completely

determines- the final appearance of the document. T h e manuscript

is expected to contain a document type declaration, else the

s y s t e m uses a prespecified default type.

3.3 Character Sets and Font Variations

T h e initial set of ASCII, BCD and EBCDIC characters provide

a n initial set of characters w h i c h are easily represented on the

system. Special characters present some difficulty of

representation. H o w e v e r some special characters are just

ligatures of the initial set o f characters, and for this set the

s y s t e m w i l l just substitute the ligature graphic o f the group of

characters that appear in the manuscript. O t h e r special

characters a r e printed as special fixed m a c r o s w h o s e definition

encodes information about h o w to print the special character on

the available printing devices. T h e naming scheme presupposes

that the document preparation s y s t e m designer knows all the

special characters that will exist on the printing devices and

gives t h e m names in advance.

3.4 T h e D a t a b a s e

T h e s y s t e m database contains m o s t o f the information needed

by the s y s t e m to produce documents. Two m a j o r types o f

information are stored:

(1) D e v i c e Information

U s e d for determining the printing device and

and for retrieving the device definition from

the database. The device definition s o retrieved

contains the specifications for the physical

properties of the device, including the

specifications for retrieving fonts and format

data pertinent to that device.

(2) Document Format Definition

After the system has processed the device data,

i t retrieves and processes the appropriate

format definition from the database. The document

format definition data is used for selecting fonts

and environments .for specified document types.

4. THE SUPPORT ENVIR0"T

T h e development of a document calls f o r a rich environment

w h i c h provides the w r i t e r w i t h as many tools a s possible to

enable him manipulate both the structural and textual parts of

the document as w e l l as providing h i m with facilities f o r

document management. T h e goal of this support environment is to

provide a n integrated set of tools that automate as m u c h a s

possible the clerical w o r k involved in preparing a document. S u c h

a n environment will exist in the form of a h i g h level screen

oriented w o r k station with possibly m a n y w i n d o w s or screens f o r

simultaneous viewing with both structure and text editing

capabilities.

Some of such editors in the literature have been discussed in

the earlier sections o f this report (see Section 2) . T h e

implementation of the editor w o u l d consist of a top level

executive a n d the set of tools that i t invokes. T h e r e are three

major functional group of tools [Walker, 811:

(1) W r i t i n g A i d s ,

(2) Structure Editing A i d s ,

(3) Document Management Aids.

4.1 W r i t i n g A i d s

T h e s e are tools w h i c h assist the w r i t e r with strictly

E n g l i s h language aspects of document preparation. T h e r e are three

main categories of such aids: Batch, Interactive Batch and

Imnediate aids. Batch aids provide output f r o m the document after

the w h o l e document has been processed (e.g., MJLTICS Wordlist).

An interactive batch aid w o u l d provide both batch and interactive

options for processing control (e.g., the optional use of the

"continuous- option for display in the MADAM system). Imnediate

aids w o u l d operate in interpretive m o d e to provide imnediate

execution of processing comnands as they are typed in.

4.2 Structure Editing A i d s

These are tools for manipulating the structural elements of

the document. T h e structural elements are regions corresponding

to logical hierarchical components. A file tree can be used to

represent a document by designating the document as the root, the

chapters are the decendants of the root and are roots themselves

of other lower level structures such as sections w h i c h in turn

are roots of paragraphs and so on. T h e four m a i n classes of

comnands for structure editing are Locators, Constructors,

M u t a t o r s and Selectors.

4.2.1 Locators

T h e s e are comnands for locating places in a document file

having certain structural properties. Some Locator comnands

discussed by Janet W a l k e r [Walker, 811 include the use of

keywords m, UP, NEXT, ANY and FIND in association with a

specified structural element.

4.2.2 Constructors

T h e support environment m u s t provide facility for the

addition of n e w structural elements of a specified type.

Constructors are used for this purpose. Typical constructor

comnands w o u l d employ the keywords CREATE, MAKE and LIST to

create, m a k e o r l i s t specified structural elements.

4.2.3 M u t a t o r s

M u t a t o r s provide facility for structural revision by

changing the abstract status of a particular portion of the

manuscript. Examples of comnand keywords include PUSH, DROP,

RAISE, POP w h i c h are used respectively in conjunction with the

specified structural element. For example, PUSH "section" m a k e s a

section into a subsection and the former subsections into

subsubsections. DROP reduces the status of section to those of

i t s subsections. POP and RAISE have opposite effects

respectively.

4.2.4 Selectors

Selectors provide a n avenue for visualizing the

organizational structure of a growing document by displaying

several levels of it. Selector comnand keywords include the

verbs SHCW, SELECT, and DISPLAY.

4.3 Document Management A i d s

T h e set of desirable document management aids include

facilities for cross referencing, indexing and annotation.

4.3.1 C r o s s Referencing

In order to provide cross references w h i c h are always

correct, cross reference candidates m u s t be identified and tagged

with the appropriate m a r k u p symbol. An entry will then be m a d e in

the cross reference table. In SCRIBE [Reid, 8 0 1 correct cross

referencing is achieved by tagging cross reference candidates.

F o r example @ref [idTable] informs the s y s t e m that “I am the

table having cross reference label idTable”. G i v e n the

availability o f a cross reference table as w e l l as the

appropriate m a r k u p for the target symbols, a n interactive utility

will be required for cross reference lookup. Example comnands in

s u c h a utility include: F O L W XREF pointers and FIND all

fingers(to find all cross references that point to particular

object 1 .

4.3.2 Indexing

Indexing is perhaps one o f the m o s t difficult aspects of

document preparation to computerize. Robert C o l l i s o n [Collison,

661, author o f a n outstanding w o r k on m a n u a l indexing, lists

t w e n t y rules that a w e l l prepared index m u s t have. M o s t o f

Collison’s rules require the indexer to have a clear

understanding of the m e a n i n g of the text. T h e need to understand

the m e a n i n g of w o r d s and phrases raises semantic problems w h i c h

are difficult to computerize. T h e KWIC (Keyword In Context)

m e t h o d of automated indexing i s a n a p p r o a ch w h i c h w a s designed to

overcome this problem. Because of these semantic difficulties, i t

w o u l d be desirable to have a n interactive indexing facility w h i c h

allows the w r i t e r to type in the basic phrase and get the system

to generate permutations f r o m w h i c h the user c a n m a k e appropriate

selections and possibly w e e d out poor candidates. Suitable

comnands include: FOLLCW index pointer, FIND all fingers(all

indexes that point to this one), MAKE index entry, SH<Iw index

symbols, MIDIFY index entry and ANALYZE index (to determine

suitability).

4.4 Anno t at ion

A m e c h a n i s m is required for associating with any alleged

fact, the predigree for the fact. T h e annotation p r o b l e m is

supported by a document type definition w h i c h includes an

environment f o r annotation.

4.5 Partial Output

A large document will consist essentially o f a set of files

as illustrated in the document file tree. W h e n the document is

large, there is need to be able to produce partial outputs o f

each o f these files since many of these files may be produced in

different time frames at possibly remote locations. T o provide

the possibility of partial outputs, the s y s t e m m u s t include a

facility to save the designated structural elements and their

relative relations to each other so that cross references as w e l l

as indexes may be preserved.

4.6 Document Maintenance

T h e contents and size of a document i s bound to change f r o m

time to time following revisions and the inclusion of n e w

material. T h i n g s like cross references, bibliography, annotation

change correspondingly. A document maintainance facility for

updating (possibly changing) all the variables i s required as a n

aid to document revision.

5. DATA STRUCNRES

T h i s section addresses the question of data structures and

algorithms required to represent text in order to permit the type

of storage and retrieval techniques that have been discussed thus

far. T h e record and storage structures w h i c h appear in this

section have been taken f r o m SCRIBE [Reid, 801. T h e record and

storage structure of SCRIBE i s a m e a n s o f dynamic storage

allocation w h e r e b y m e m o r y is allocated by creating a record and

deallocated by destroying the record.

5.1 Strings

Strings are variable length objects built on top of the

record system. A string consists of two parts - a record token

and a buffer record.

TYPE S t r i n g T o k e n =

RECORD

Buffer : t r i n g d u f f e r ;

S t r i n g s i z e : integer;

L e f t g o i n t e r : character-index;

R i g h t g o i n t e r : character-index;

EM);

TYPE StringJuffer = ARRAY[l..N] o f character;

5.2 Association Lists

An association list, or pair list, is a list of pairs of

typed values. E a c h cell of the l i s t carries two values w i t h a n

explicit record of the type of each. T h e s e pair lists are

sometimes used as property lists - one list for each object with

its contents being attribute value pairs, and sometimes as

associations - one list for each attribute with its contents

being object/value pairs.

TYPE l i s t d o i n t e r = st-cell;

TYPE list-cell -
RECORD

next-cell:list_pointer;

value-1:any;

type-1:type;

value-2:any;

type-2:type;

END;

5.3 Manuscript Files

A s a manuscript file is being processed, i t is represented

as a sequence of records, each corresponding to one line of the

manuscript file:

TYPE Manuscript-line =

RECORD

L i n e g a m e : s t r i ng :

Text-of-1ine:string;

Processing-cursor:integer;

5.4 Fonts

Font information is kept in order to k n o w the following

info rma t i on :

(1) Sizes (widths and heights) o f letters and symbols

in order to k n o w h o w m a n y w o r d s to place on a line.

(2) Ligature combinations that are available in fonts.

(3) C o d e s to send to the printing device in order

for i t to print or d r a w the desired letter.

Font information for SCRIBE i s kept in the database. I t s

structure during usage is as follows:

TYPE FONT =

RECORD

Font-name: string;

Font-Size: vertical distance;

Character widths: ARRAY[1..127] of horizontal-distance;

C h a r a c t e r d i s p : ARRAY[1..127] of horizontal-distance;

Character-constructions: ARRAY[1..127] of string;

Ascii-translation: ARRAY[1..127] of integer;

Draw-codes: ARRAY[1..127] of string:

Ligatures: pairlist of(name:string,code:integer);

Special-symbo1s:pairlist of(name:string,code:integer)

EM);

5.5 Environments

Environments are implemented as pair lists and used a s

property l i s t . An environment is a n ordered set of dynamic

parameter names and changes to be m a d e to these parameters. T h e

environment structure is:

TYPE Environment = (not) Environment-pair;

TYPE Environment-pair =

RECORD

Next-Cell: (not) E n v i r o n m e n t S a i r ;

Parame t e r 3 a m e : integer ;

Change-va1ue:any;

Change-type:type;

EM);

5 . 6 Text Buffers

The manuscript text is assembled by the formatter into

words, lines, boxes and pages. Each of these is kept in an

appropriate record. Word records are assembled into line records,

line records are assembled into box or page records and when

assembly is complete, the assembled page is written into the

device file.

A word buffer holds one word:

TYPE Word-buffer =

RECORD

Text : string ;

B o u n d i n g w i d t h : H o r i z o n t a l d i s t a n c e :

Bounding2eight:Vertical-distance;

Left-spacing:Horizontal-distance;

Right-spacing:Horizontal-distance;

top-spacing:Vertical-distance;

BottorQspacing:vertical-distance;

Footnote-box:Textbox;

EM);

A line buffer holds one line:

TYPE Line-buffer = RECORD

Text:string;

Next-line: < ’ (Line-buffer OR BoxBuffer);

Parent-box: < > Box-buffer;

X+origin:Horizontaldistance;

Y-0rigin:Vertical-distance;

B o u n d i n g w i d t h : H o r i z o n t a l d i s t a n c e ;

Bounding3eight:Verticaldistance;

Left-spacing:Horizontal-distance;

Right-spacing:Horizontal-distance;

T o p - s p a c i n g : v e r t i c a l _ d i s t a n c e ;

BottoLspacing:vertical-distance;

Footnote-box:Text-box;

The text o f the line is the concatenation of the text strings in

the line. A box bufffer is similar to a line buffer but instead

of a text field, i t has a child box field which points to a list

of line records that contain the actual text.

TYPE box-buffer = RECORD

Child-box: (not) (Line-buffer OR Box-buffer)

Parent-box:(not) Box-buffer;

Next-line:(Line-buffer OR Box-buffer)

2Lorigin:Horizontal-distance;

Y-origin:Verticaldistance;

B o u n d i n g w i d t h : H o r i z o n t a l d i s t a n c e ;

B o u n d i n g 2 e i g h t : V e r t i c a l d i s t s n c e ;

Left-spacing:Horizontal-distance;

Right-spacing:Horizontal-distance;

T o p - s p a c i n g : V e r t i c a l _ d i s t a n c e ;

B o t t o c s p a c i n g : V e r t i c a l d i s t a n c e ;

Footnote-box:Textbox

END;

5.7 O t h e r Support Structures

In addition to the above structures, a document preparation

s y s t e m w i l l use a symbol table w h e r e all comnands, environments,

u s e r defined names and file names are kept. T h e s y s t e m w i l l also

m a i n t a i n several dictionaries w h e r e certain data items are kept

for easy lookup.

6 . STRING MATCHING ALGORI-

In many information retrieval, text editing and document

processing applications, i t is necessary to quickly locate some

or all occurrences of user specified patterns of words and

phrases in the text. The problem of pattern matching is central

to all 1- issues as the efficiency of a retrieval technique

will depend largely on the speed with which objects are located

in storage. In this section, a brief discussion of a few

efficient algorithms will be presented. The focus will be the

introduction of the technique and an identification of related

publications.

Simple programs for searching text typically require a

worst case running time of O(m*n) where m is the length of the

pattern and n is the length of the string(i.e., the text).

However, Knuth [Knuth, et al., 771 showed that this can be

reduced to O (n) . Later, Boyer and Moore [Boyer, et al., 771

published a practical and simpler algorithm that also has a

linear worst case running time. Other algorithms have been

published using different techniques such as text signatures

[Harrisson, 711, character frequency in text [Horspool, 801, and

Huffman encoding with tries (PATRICIA) [Morrison, 681. Most of

these linear time algorithms rely on the fact that, in the

average case, only a small fraction of the n characters o f the

I N A S A I -----------

text are actually inspected.

6.1 Scan for First Character(SFC) [Horspool, 8 0 1 .

Some computers have a single instruction that can be used

to search memory for the first occurrence of a designated

character. If such a search instruction were available, i t would

seem very reasonable to employ i t in locating a substring within

a larger string. This is idea behind the SFC algorithm which

f 0 1 1 ows .
Algorithm SFC

/ * STRING is text to be searched, STRINGLEN its length*/

/ * PAT is substring to be found, PATLEN its length*/

begin

if patlen > stringlen then return 0 ;

ch := pat[l];

i : S O ;

repeat

SCAN string[i+l .. stringlen - patlen + 11 to find

first occurrence of ch;

if ch was not found then return 0 ;

i:=position where ch was found;

until string[i .. i+patlen-l] = pat;

return i

end ;

If the algorithm returns " 0 " , then PAT does not occur in STRING,

otherwise the result is the first occurrence.

6 . 2 Scan for Lowest Frequency Character [Horspool, 8 0 1

A walk through of algorithm SFC with a pattern containing

the letter E (high frequency English letter) on any reasonably

sized text string will lead to a lot of mismatches a s the pattern

is moved across the text. Consider the word EXTRA, the letter X

in the pattern occurs infrequently in English words. So if the

search instruction were used to locate successive occurrences of

X instead of E, i t would be possible to skip through hundreds of

characters at the same time. The idea behind Algorithm SFLC is to

pick the character in PAT which occurs least frequently in

STRING.

Algorithm SLFC

begin

if patlen > stringlen then return 0 ;

find j such that pat[j] is the character in pat with

the lowest frequency in English text;

ch:=pat[j];

i:=j-1;

repeat

SCAN string[i+l .. stringlen - patlen + j l

to find first occurrence o f ch;

if ch was not found then return 0 ;

i:=position where ch was found;

until string[i-j+l . . patlen-j]-pat;
return i-j+l

end;

The character frequency information required by this algorithm is

provided in the form of an alphabet table sorted in order of

expected frequency of occurrence.

6.3 The K " - M) R R I S - P R A l T A l g o r i t h m [Knuth, et al., 7 7 1 .

The idea behind the KMP algorithm is to construct a failure

transition table from the pattern which indicates how far to

slide the pattern across the text string when a mismatch occurs

at each position of the pattern. The pattern matching procedure

constructs a deterministic finite state automaton having a next

state t r a n s i t i o n for each alphabet in the pattern. T h e s e values

are kept in a table called the NEXT[j] table < j is the index of

the pattern alphabets).

Algorithm KMP

begin

place pattern at the left;

while pattern not fully matched

and text not exhausted do

begin

while pattern character differs from

current text character

do shift pattern appropriately;

advance to next character of text;

end;

end;

The detailed coded algorithm for this procedure can be found in

[Knuth, et al., 7 7 1 .

6 . 4 The BOYER and MX)RE algorithm (wll) [Boyer, et al., 7 7 1 .

The Bprl algorithm is similar in concept to the KMP algorithm

but differs in that the algorithmmatches the pattern in a right

to left order while the pattern is being moved to the right. They

are similar in concept in that there is a preprocessing stage in

which the pattern is processed to obtain a failure transition

table which indicates how far right to slide the pattern in case

o f a mismatch. In the case of Boyer and Moore, two tables

deltal(char1 and delta2(string) are used to decide how far right

to slide the pattern in the text. Deltal(char1 provides the

opportunity to jump through whole pattern lengths on the string

while delta2(i) determines how far right to slide based on the

"rightmost plausible reoccurrence of the pattern in the text".

The Algorithm follows:

Algorithm FM

/Assume the availability of Delta1 and Delta2 table*/

last-ch := pat[patlen];

i:-patlen;

While i < = stringlen do

begin

ch := string[i] ;

if ch = last-ch then

begin

j-patlen - 1;

repeat

i f j=O then return i;

j:=j-1-

i zzi-1 *

until string[i]<,pat[jl;

i := i + max(deltal[ch], delta2[J]);

end

else

i := i+deltal[ch];

end ;

return 0 ;

end.

6.5 Text-Signatures [Harrison, 711.

Malcolm Harrison has observed that superimposed coding can

speed up text searching. If i t is desired to locate all

occurrences of a pattern in a string of text, assuming that the

text is divided into individual lines cl,c2, ..., c50 of fifty
character each (an example). Harrison suggests encoding each of

the 49 pairs clc2, c2c3, ... , c49c50 by hashing them into a

number between 0 and 127, say; then the "signature" of the line

clc2...c50 i s the string o f 128 bits bObl...b127 where b(i) = 1

if and only if h(c(j)c(j+l)) = i for some j.

The pattern matching algorithm then proceeds by comparing

the signature of the text against the signature of the pattern

using fast binary operators such as AND.

6.6 Practical Algorithm for Retrieval o f Information

Coded in Alphanumeric (PATRICIA) [Morrison, 681.

PATRICIA is particularly suited for dealing with extremely

long, variable-length keys such as titles or phrases stored

within a large bulk file. Its basic idea is to build a binary

trie but to avoid one-way branching by including in each node the

number of bits to skip over before making the next test.

I N A S A I -----------

In this report, w e have outlined some of the fairly recent

issues that relate to document processing. M a n y problems with

semantic requirements s t i l l continue to defy computerization;

however, the development of artificial intelligence and

knowledge-based systems continue to promise w e l l for the future

a s m o r e efficient techniques for storage and retrieval continue

to be discovered through research. M u c h material relating to

document processing in particular and text processing in general

h a s been omitted because of the limited scope of this report.

H o w e v e r , w e believe that the material presented herein will

provide adequate incentives for further research for the

interested reader.

REFERENCES

I [Allen, et al. 8 1 1 . Allen T., Nix R. and Perlis A., "PEN: A
Hierarchical Document Editor," D L SI=
Sgmposium PP Text Maninulatipn , Jun. 8 1 , pp. 74-81.

I

[Boyer, et al., 7 7 1 . Boyer, R. S . and Moore, J . S., "A Fast String
Searching Algorithm," cA(M, 2 0 : 1 0 , Oct. 7 7 .
pp. 762-772 .

[Chamberlain, et al., 8 1 1 . Chamberlain D. D . , King J. C., Slutz D. R., , Todd S. J. and Wade B. W., "JANUS: AN INTERACTIVE
SYSTEM FOR DoculENT CXMPOSITION," A m SIGPLAN/SIGOA
Symposium on Text Manipulation, Jun. 8 1 , pp. 82-91.

[Collison, 5 9 1 . Collison, R. L., Indexi- -Guides
exing Books anb other m , John de Graff

Inc., New York, 1959 .

[Goldfarb, 8 1 1 . Goldfarb, C. F., "A Generalized Approach to
Document Markup," Conference Record, ACM
SIGPLAN/SIGOA Symposium on Text Manipulation,
Portland, Oregon. Jun. 1 9 8 1 , pp. 68-73 .

[Hamner, et al., 8 1 1 . Hamner M., Ilson R., Anderson T.,
Good M., Niamir B., Rosentein L., and Schoichet S.,
"The Implementation of Etude, An Integrated and
Interactive Document Production System," Conference
Record, A m SIGPLAN/SIGOA Symposium on Text
Manipulation. Portland, Oregon. Jun., 1 9 8 1 pp. 137
- 1 4 6 .

[Harrison, 7 1 1 . Harrison, M. C., "Implementation of the
Substring Test by Hashing," cA(IM, 1 4 : 1 2 ,
Dec. 1 9 7 1 . pp. 777-779.

[Horspool, 8 0 1 . Horspool, N., "Practical Fast Searching in Strings,"
Software Practice anh Exaerience , 1 9 8 0 ,
pp. 501-506 .

[Kernighan, et al., 7 5 1 . Kernighan B. W. and Cherry L. L., " A
System for Typesetting Mathematics," w,
1 8 , Mar. 7 5 . pp. 151-156. I

[Knuth, et al., 7 7 1 . Knuth, D. E., Morris, J. H . and Pratt, V. R.,
"Fast Pattern Matching in Strings," SIPbl J- u, 6 : 2 , Jun. 7 7 , pp. 3 2 3 - 3 5 0 .

[Knuth, 7 9 1 . Knuth, D. E . T E X d M E T A F o N T . - hkw Direction& in
e s e t t i u , American Math. Society and Digital

Press, 1 9 7 9 .

[Morrison, 6 8 1 . Morrison, D. "Practical Algorithm To Retrieve
Information Coded in Alphanumeric," UCM,
1 5 , 1 9 6 8 , pp. 5 1 4 - 5 3 4 .

. .
: A SDeclflcatim [Reid, 8 0 1 . Reid, B.K. SCRIBE

, Ph.D Dissertation, Languape and, i-ts l h w i l e r
Dept. of Computer Science, Carnegie-Mellon
University, Oct., 1 9 8 0 . Tech. Rep. W - C S - 8 1 - 1 0 0 .

[Stallman, 8 1 1 . Stallman, R.M. "EMACS: The Extensible
Customizable, Self-Documenting Display Editor,"
Conference Record, ACM SIGPLAN/SIGOA Symposium on
Text Manipulation. PortLand, Oregon. Jun., 1 9 8 1 .
pp. 1 4 7 - 1 5 6 .

[Stromfors, et al., 8 1 1 . Stromfors 0. and Jones J. L., "The
Implementation and Experiences o f a Structure
Oriented Text Editor," Conference Record, ACM
SIGPLAN/SIGOA Symposium on Text Manipulation, Jun. 8 1 ,
pp. 2 2 - 2 7 .

[Walker, 8 1 1 . Walker, J.H. "The Document Editor: A Support
Environment for Preparing Technical Documents,"
Conference Record, ACM SIGPLAN/SIGOA
Symposium on Text Manipulation, Portland,
Oregon. Jun. 8 1 , pp. 4 4 - 5 0 .

APPENDIX

Fig. 2.1 Information F l o w Schematic in a
Traditional P u b l i s h i n g Operation.

- 47 -

I The I
I Author I

- - - - - - I - - - - - -
V

I 1 < - - Document D e s i g n
I THE I < - - T y p o D e s i g n
I I
I CUWUTER I
I I < - - Layout D e s i g n
I I < - - Indexes
I I
I I ---------.-----______

V

Fig. 2.2 Information Flow in a n Automated
Publishing Operation.

- 48 -

I N A S A I

I F i n i s h e d
I Document

Fig. 2.3 Information F l o w in a C o m p u t e r i z e d
Publishing Operation.

- 49 -

1. Repon No.

/N - 8 2

7. Authods)

VALENTINE U. IHEBUZdR

2. Government Accession No. / rJJJy 3. Recipient’s Catalog No. -
I 8. Performing Organization Report No.

’ i 1. 4. Title and Subtitle

USL/NGT-19-010-900:
STORAGE AND RETRIEVAL ISSUES I N COMPUTERIZED DOCUMENT
PROCESSING

AN OVERVIEW OF SELECTED INFORMATION

10. Work Unit No.
9. Performing Organization Name and Address

5. Report Date Zr? *L
December 29, 1984 ip, ,pdn,&

6. Performing Organization Code

Univers i ty of S o u t h w e s t e r n L o u i s i a n a
The Center f o r Advanced Computer S t u d i e s
P.O. Box 44330
L a f a y e t t e , LA 70504-4330

11. Contract or Grant No.

NGT-19-010-900
13. Type of Report and Period Covered

17. Keywords (Suggested by Author(s1)

Computerized Document Processing
Techniques, String Matching Algo-
rithms, Information Storage and
Retrieval Systems

12. Sponsoring Agency Name and Address

18. Distribution Statement

FINAL; 0 7 / 0 1 / 8 5 - 1 2 / 3 1 / 8 7

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages

U n c l a s s i f i e d U n c l a s s i f i e d 49

1

I 5. Supplementary Notes

22. Rice’

16. Abstract -

The rapid development of computerized information storage and retrieval techniques has introduced
the possibility of extending the word processing concept to document processing. A major advantage
of computerized document processing is the relief of the tedious task of manual editing and composi-
tion usually encountered by traditional publishers through the immense speed and storage capacity of
computers. Furthermore, computerized document processing provides an author with centralized con-
trol, the lack of which is a handicap of the traditional publishing operation. A survey of some compu-
terized document processing techniques is presented with emphasis on related information storage
and retrieval issues. String matching algorithms are considered central to document information
storage and retrieval and are also discussed.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana’s
Final Report on NASA Grant NGT-19-010.900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

-
For sale by the National Technical Information Service, Springfield, Virginia 221 61

